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The type 11 cell plays an important role in the response of the alveolar epithelium after lung injury
through its synthesis and secretion of pulmonary surfactant, and by acting as the stem cell for the
replacement of damaged type epithelial cells. The nonciliated bronchiolar epithelial (Clara) cell is
thought to play a similar role during repair of the bronchiolar epithelium. Recent evidence has
suggested that epithelial cells may participate in aspects of the inflammatory response and
regulation of fibroblast growth during pulmonary fibrosis through the production of and response

to specific growth factors and cytokines. The cellular and molecular responses of epithelial cells
and how they lead to the progression of events that defines the pulmonary parenchymal
response to a class of particles is unclear. We used particles differing in size, chemical
composition, and fibrogenicity in vivo and in vitro to elucidate early changes in proinflammatory
and profibrotic cytokine and antioxidant gene expression in lung cells. Early increases in mRNA
and protein for the proinflammatory cytokines interleukin (IL)-1f, IL-6, and tumor necrosis factor
alpha have been observed in epithelial cells following exposure. These are accompanied by
changes in specific epithelial genes including surfactant protein C and Clara cell secretory protein.
The data indicate that effects on the epithelium are due to direct interactions with particles, not a

result of macrophage-derived mediators, and suggest a more significant role in the overall
pulmonary response than previously suspected. These results suggest that type 11 cell growth
factor production may be significant in the pathogenesis of pulmonary fibrosis. Environ Health
Perspect 1 05(Suppl 5):1 179-1182 (1997)
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Introduction
The pulmonary response to inhaled
particulates has been the subject of compre-
hensive investigation for many years. Studies
of the deposition and clearance of such
inhaled materials provide a useful frame-
work for a more in-depth study of the cellu-
lar and molecular events that are involved in
the acute and chronic manifestations of par-
ticle-induced lung injury (1). Much of the
initial phase of such studies investigated
physiologic aspects of the pulmonary

response to particles including investigations
of phagocytosis, development of markers of
acute injury, and quantitation of inflamma-
tory cell recruitment (2). More recent inves-
tigations attempt to address aspects of the
ability of various inhaled materials to influ-
ence gene expression in specific lung cell
populations and the relationship of alter-
ations to previously characterized inflamma-
tory changes (3,4). Additionally, these
studies attempt to provide mechanistic

This paper is based on a presentation at The Sixth International Meeting on the Toxicology of Natural and Man-
Made Fibrous and Non-Fibrous Particles held 15-18 September 1996 in Lake Placid, New York. Manuscript
received at EHP26 March 1997; accepted 20 June 1997.

The authors wish to thank C. Reed, L. Paulhamous, N. Corson, and P. Mercer for their technical assistance.
This work was supported in part by HL 36543, ES 04872, CA 27791, CA 11051, ES 01247, National Aeronautics
and Space Administration Specialized Center of Research and Training grant NAGW-2356, the Nickel Producers
Environmental Research Association, and a Health Effects Institute contract.

Address correspondence to Dr. J.N. Finkelstein, Department of Pediatrics, Box 777, University of Rochester
School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642. Telephone: (716) 275-5948. Fax: (716) 256-
2631. E-mail: finj@envmed.rochester.edu

Abbreviations used: Clara, nonciliated bronchioepithelial; IL, interleukin; LPS, lipopolysaccharide; MIP,
macrophage inflammatory protein; PTFE, polytetrafluoroethylene; TGF, tumor growth factor; TNF, tumor
necrosis factor.

information relating these inflammatory
gene changes and the progression of this
acute response to a chronic disease state such
as fibrosis or the induction of pulmonary
carcinogenesis (5-10).

Most studies of this type address the
initial phase of injury, the inflammatory
response, and focus on the expression of
inflammatory cytokine genes and their
temporal relationship to the recruitment of
inflammatory cells by the lung (5-10).
The overwhelming majority of these studies
investigated the production of cytokines
and other aspects of altered gene expression
by the alveolar macrophage (11-13). Such
studies show the remarkable ability of the
resident alveolar macrophage to upregulate
its expression of a wide variety of proin-
flammatory (10,14-16) and profibrotic
(17,18) cytokines.

Investigations of the pulmonary
epithelium response following particle
exposure have been less well studied.
Pulmonary epithelial cells have been exten-
sively studied with regard to their func-
tions as the producers of pulmonary
surfactant and their role in the metabo-
lism of inhaled and systemic lipophilic
substances (19). More recently, a number
of studies suggested that these epithelial
populations may also play a role in defin-
ing the inflammatory environment within
the lung. Of particular interest in this
study is the observation that the pul-
monary epithelial cells can produce a
variety of inflammatory cytokines [for
review, see Simon and Paine (20)].
Expression of granulocyte macrophage-
colony-stimulating factor, tumor growth
factor (TGF)-p (21), and TGF-x (22)
have been detected in type II cells. More
directly related to the question of inflam-
matory cell recruitment is the production
of the specific chemoattractants inter-
leukin (IL)-8 (23,24) and regulated on
activation normal T cell expressed and
secreted (25) by alveolar epithelial cells
and cell lines in vivo and in vitro. In addi-
tion, studies show increased expression of
macrophage inflammatory protien
(MIP)-la, MIP-2, and tumor necrosis
factor (TNF)-ca following mineral dust
exposure (16,26).

This study expands on this aspect of
the pulmonary response to particles by
examining the expression of proinflamma-
tory cytokines in the lungs of rats and mice
following exposure to particles of varying
size and chemical composition, in relation
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to their ability to induce acute and chronic
lung injury.
Materials and Methods
Tissues and fluids used for cytokine
analysis were derived from C57B1/6J mice
exposed to TiO2 and Ni2S3 by inhalation,
as described previously, and sacrificed at
the times indicated in the figure legends.
Measurement of acute increases in lavage
and plasma IL-6 and TNF were carried out
in fluids obtained from C57B1/6J mice
exposed to ultrafine polytetrafluoroethyl-
ene (PTFE) fumes, as described previously
by Johnston et al. (27). These animals
were sacrificed 6 hr after a 30-min expo-
sure to 1.25, 2.5, or 5x 105 particles/cm3
or sham controls. Lipopolysaccharide
(LPS)-injected mice were sacrificed 2 hr
after intratracheal or intraperitoneal admin-
istration of 10 pg LPS (Sigma Chemical,
St. Louis, MO).

Lavage fluid was collected from mice
sacrificed by pentabarbital overdose; saline
at a volume of 1 ml for 10 repeated lavages
was used. Plasma samples were collected
by cardiac puncture prior to lavage and
anticoagulated with a fixed volume of
heparin (50 pl).

Cytokine analysis was carried out by use
of specific murine cytokine enzyme-linked
immunosorbent assay kits purchased from
Biosource International, Camarillo, CA and
by following the manufacturer's recom-
mended protocol. In situ hybridization for
epithelial markers was performed as
described previously (27).

Results and Discussion
Figures 1 and 2 show changes in the
cytokines IL-6 and TNF in plasma and
lavage fluid following both intratracheal
and intraperitoneal administration of LPS.
It is clear that exposure to this potent
inducer of inflammation caused a dramatic
increase in cytokine abundance in both the
plasma and lavage compartments. When
LPS was delivered directly to the lung, IL-6
was significantly elevated in both lavage and
plasma compartments. In contrast, systemic
LPS led to a much greater plasma response
than that measured in the pulmonary com-
partment. This would suggest that mea-
surement of a plasma/lavage ratio for this
cytokine may be useful in determining the
source of the inflammatory stimulus.

This is further reinforced by the TNF
data shown in Figure 2. Localization of this
cytokine appears restricted to the compart-
ment where the stimulus was introduced.
Virtually no crossover between lung and

plasma compartments was observed when
TNF was measured. This suggests the
importance of locally generated cytokines
in the regulation of pulmonary inflamma-
tion, especially as related to the role ofTNF
in the regulation of the production of other
cytokines and chemotactic factors.

Nevertheless, these studies show the
utility and sensitivity of cytokine analysis
of murine lung lavage in the characteriza-
tion of the regulation of the acute phase of
pulmonary injury.

Figure 3 shows the absolute change in
lavage IL-6 amounts following acute PTFE
fume inhalation. In a previous study (27)
we showed that acute PTFE fume inhala-
tion leads to an increase in mRNA for IL-
6. At the highest exposure level this was
nearly 40-fold. Measurement of IL-6 pro-
tein suggests a threshold response to these
partides with no increase noted at the lowest
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exposure concentration and a greater than
100-fold increase in protein at the higher
particle concentrations. Analysis ofTNF-a
and IL-,B in the same lavage fluid showed a
more modest 2-fold increase in these
cytokines in the highest particle exposure
group. Plasma cytokine measurements
showed no significant increase in any of
these cytokines, which implicates the pul-
monary compartment as the site of cytokine
synthesis in this model.

Both sets of previous experimental data
show the ability and utility of measuring
cytokines, namely IL-6, following acute
lung injury associated with a profound
inflammatory response. The data in Figure 4
suggest that IL-6 can also be used as a
marker for pulmonary response in an
inflammatory process as induced during
chronic particle inhalation. Lavage fluid
obtained from mice exposed to the nontoxic
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Figure 1. Measurement of IL-6 following lipopolysac-
charide administration. Bronchoalveolar lavage fluid
and plasma samples were collected from mice 2 hr
after intratracheal (it) or intraperitoneal (ip) administra-
tion of LPS as described in "Materials and Methods."
Immunoreactive IL-6 was measured by enzyme-linked
immunosorbent assay (ELISA) using monospecific anti-
bodies. Results represent the mean of triplicate deter-
minations of samples collected from four individual
animals. Interassay variability was less than 5%.
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Figure 3. Measurement of IL-6 following polytetra-
fluoroethylene fume inhalation. Bronchoalveolar lavage
fluid was obtained from mice 6 hr after a 30-min expo-
sure to PTFE fumes at high (5x105), medium
(2.5x 105), and low (1.25x 105) particles/cm3, respec-
tively. IL-6 was assayed by ELISA. Data represent the
mean of duplicate determinations of samples from
three animals.
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Figure 2. Measurement of TNF-a following
lipopolysaccharide administration. Bronchoalveolar
lavage fluid and plasma samples were collected from
mice 2 hr after intratracheal or intraperitoneal adminis-
tration of LPS as described in "Materials and Methods."
Immunoreactive IL-6 was measured by ELISA using
monospecific antibodies. Results represent the mean of
triplicate determinations of samples collected from four
separate animals. Interassay variation between
samples was less than 5%.
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Figure 4. Measurement of IL-6 following chronic particle
inhalation. Bronchoalveolar lavage fluid was obtained
from mice at the indicated times during a 13-week expo-
sure at 6 hr/day, 5 days/week of 10 mg/m3 TiO2-F, 5
mg/m3 NiO, or 0.5 mg/m3 Ni3S2. IL-6 was assayed by
ELISA. Data represent the mean of duplicate determina-
tions of four separate samples for each particle group.
Abbreviation: TiO2-F, standard (200 nm diameter).
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particle TiO2 (200 nm diameter) and two
suspected pulmonary carcinogens NiO and
Ni2S3 were analyzed for IL-6. Although all
three partides caused some increase in inflam-
mation markers, these were significant only
for the Ni2S3 group (data not shown). Total
lavage cells increased nearly 10-fold, with
lymphocytes and granulocytes increasing
30- and 2-fold, respectively. This inflamma-
tion is clearly reflected in the amount of IL-
6 detected in the lavage. Although the
magnitude of the change is not nearly as
dramatic as seen in the acute injuries, there
was a clear association between pulmonary
inflammation and detectable lavage IL-6.

Although the data presented suggest mea-
surement of IL-6 can reflect the inflamma-
tory state of the lung, none of these changes
indicate the cell population that is responsible
for its production. Although it is logical to
assume that the production of this and other
cytokines is due to the activation of the
recruited inflammatory cells, we evaluated
the hypothesis that particle-induced inflam-
mation could induce the expression of a
cytokine subset by pulmonary epithelial cells.
We initiated a series of studies designed

to measure the ability of isolated type II
cells to produce inflammatory cytokines in
vitro. Figures 5 and 6 show the results of
the incubation of cultured primary type II
cells with various forms and concentrations
of TiO2. Consistent with its more potent
inflammatory response in vivo, Figure 5
shows that addition of 10 pg/ml ultrafine
TiO2 (10 nm diameter) to cultured type II
cells leads to increased release of TNF.
This increase persisted throughout the
entire 48-hr incubation period. In contrast,
a standard TiO2 particle (200 nm diame-
ter) elicited no cytokine increase. A similar
result is evident in Figure 6, where IL-1
production following culture with TiO2
(10 nm diameter) is illustrated.
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Figure 5. Measurement of TNF-a release by primary
isolated type 11 cells in culture. Type 11 cells were cul-
tured at 105/cm2 for 24 hr in DME/F12 medium. At
that time media was removed and replaced with
serum-free media containing the indicated particle at
10 pg/ml. After the indicated interval, media was
removed and assayed for TNF by ELISA. Results repre-
sent the mean of triplicate meaurements of two sepa-
rate cultures of cells. Abbreviation: TiO2-D, ultra fine
(10 nm diameter).

Type II cell cytokine expression follow-
ing in vivo particle exposure was measured
by a series of studies using in situ
hybridization to localize cytokine mRNA.
As a preliminary step we established the
precise localization of pulmonary epithelial
population in the lung through the use of
epithelial-specific markers. We chose non-
ciliated bronchioepithelial (Clara) cell
secretory protein and surfactant apopro-
tein C as markers for Clara and type II
cells, respectively. Our initial data suggest
that not only do type II cells show
increased abundance of cytokine mRNA
(27), but acute and chronic pulmonary
inflammation lead to alterations in epithe-
lial marker gene expression. We believe
changes in such marker genes, in the
absence of specific morphological evidence
of cytotoxicity and epithelial damage, indi-
cate a change in the activation state of the
epithelium and may act as a marker for
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Figure 6. Measurement of IL-1 release by primary iso-
lated type 11 cells in culture. Type 11 cells were isolated
from adult mouse lungs by standard protease digestion
and cultured at 105/cm2 for 24 hr in DME/F12 medium.
At that time media was removed and replaced with
serum-free media containing the indicated particle at
10 pg/mI. After the indicated interval, media was
removed and assayed for IL-1 by ELISA. Results repre-
sent the mean of triplicate meaurements of two sepa-
rate cultures of cells.

increased cytokine gene expression.
Studies of type II cell activation and
hypertrophy following instillation of crys-
talline silica (28,29), and recent work to
examine changes in surfactant apoprotein
gene expression following LPS administra-
tion, suggest alterations in epithelial gene
expression are closely linked to inflamma-
tory changes in the lung (30). The rela-
tionship between such expression and the
pulmonary production of cytokines requires
closer examination. Recent studies suggest
that surfactant apoprotein gene expression
can be altered in response to elevated TNF
(31). Thus a more careful examination of
the temporal sequence of cytokine and
epithelial markers is necessary. This is
especially true if expression of such epithe-
lial markers will be used to identify a spe-
cific epithelial cell population as the site of
cytokine gene expression.
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